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Abstract—The existence of viruses has been present as long
as life has existed. Understanding the past and future evolution
of viruses within its neutral network is a crucial property of
a virus. The neutral network allows a virus to be robust, and
explore a broader mutational landscape to find a high fitness to
survive. In this paper, we studied the evolution and spread of the
recently ongoing COVID-19 virus. We studied how variants of
viruses attach to humans and mutate. We determine that there
is a tiny chance that COVID-19 could evolve into the more
deadly SARS variant. The virus will usually mutate and stay
within its neutral network, as most mutations are deleterious.
Due to the high mutation rate, there is always the possibility a
variant will survive and adapt to its circumstances. This brought
us to study how a variant of the disease can spread in the
population living in a quarantined city. We modeled this scenario
by using 2-dimensional Cellular Automata with SIR dynamics
using deterministic rules and non-deterministic rules. We also
added a second variant of the disease to our toy model and
evolved the second variant to coexist with the first variant. We
achieved this with the help of a Genetic Algorithm. The results
show that modeling epidemic spread with non-deterministic rules
gave a realistic look at an epidemic spread. The results also
suggest that two disease variants can coexist equivalently in the
population. We found out that understanding the evolution of
viruses and epidemic spread at the microscopic level can help in
understanding at a macroscopic level.

I. INTRODUCTION

The world is currently experiencing an epidemic never
before encountered. While it is true that this is not the first time
we have experienced a viral pandemic, it has affected society
in a way never before written about in history. Across the
world, countries are closing schools, businesses, and airports
in response to help slow down the spread of this disease. What
is at fault for these causal responses in society? The novel
coronavirus, COVID-19, and it has declared war.

Viruses have evolved with humans for as long as humans
have existed. While we have discovered and learned a lot about
them over the years, we still have a lot to learn. We can
explore viruses as complex adaptive systems and hopefully
gain insights into how they evolve. This paper will explore
the COVID-19 virus from this perspective and attempt to
understand how this virus evolved and how it has spread.

The ideas behind complex adaptive systems are not simple.
There are a lot of different concepts that make up these
ideas. This introduction will briefly express some of them in
an attempt to ease into the rest of the paper. One of these
concepts is top-down vs. bottom-up causality. What does this

mean though? Often top-down vs. bottom-up causality can
be subjective to perspective and the definition of the system
analyzed. Bottom-up causality is the idea that the actions of
the entities at the lower level cause behavior at higher levels.
[6] For example, A person infected with COVID-19 may not
know they are and help transmit the virus. At a higher level,
hospitals and governments are starting to recognize something
dangerous is spreading. Top-down causality usually occurs
when an entity emerges from the bottom-up action. The World
Health Organization announced on March 11, 2020, [4] that
COVID-19 emerged as a pandemic. There is now a top-down
causality. At a lower level, people, that were once careless
with their actions, are now practicing social distancing and
self-quarantining.

How exactly did viruses come about? What are they? The
goal of this paper is not to teach the details of biology, but
some basic ideas could not hurt. The genetic code may be the
key to life. It is also a critical aspect of viruses. The cells in our
body encapsulate a string of DNA. This DNA contains four
different chemical bases: adenine (A), guanine (G), cytosine
(C), and thymine (T). DNA bases pair up with each other, A
with T and C with G, to form units called base [15]. These
bases get grouped up into sets of three. This set is called a
codon, and it is used as instructions to make proteins. This
idea is simple and explains the genetic code. Viruses also can
contain DNA or RNA, but the concept is the same. Just like
humans, they have a genetic code that defines them. One key
feature of human cells is that they contain the machinery to
replicate themselves. This machinery is what separates them
from viruses. Viruses usually need a host to replicate. The
origin of genetic code is thought to be a frozen accident.
The genetic code just happened by accident. It may not be
the most efficient system, but it has proven functional. It is
said to be frozen because it happened to change what evolved
afterward dramatically. Any change to this system would be
extremely disadvantageous [3].

What is the idea of complexity and chaos, and why does
it matter when we think about viruses? The logistic map is
often cited as an example of how complex, chaotic behavior
can arise from very simple non-linear systems [25]. It aims
to model the population size, given a growth rate. Fascinating
behavior can arise based on the growth rate r. When the growth
rate r is between 0 and 1, the population dies. When r is
between 1 and 3, the population converges to a single value.



When r is between 3 and 3.44949, the population oscillates
between two values. As r increases from here, the population
oscillates between more and more values until it oscillates
between infinite values and is said to be chaotic [25]. Viruses
are said to live on the edge of chaos. This edge of chaos may
be what gives it the high mutation rate characteristic. This is
critical for a virus as it allows it to be extremely adaptable to
its environment [14] [5]. There are many different measures
of complexity. Viruses also have many, but the mutation rate
is one way to measure their complexity.

The high mutation rate of a virus also allows it to explore
its neutral network. This neutral network is a landscape of
point mutations where genetic variants have the same fitness.
It is easy to see how a high mutation rate allows a virus to
explore this landscape rather quickly. This ability to explore
a neutral landscape leads to robustness and evolvability [14]
[22]. This evolvability is critical for a virus to survive. The
hosts that they infect are continually fighting back, and this
leads to an arms race between host and parasite [14]. Part 1
of this paper explores COVID-19’s neutral network.

Eventually, the exploration of this neutral network will
lead to a novel virus, a virus that our bodies are ill-equipped
to handle [7], a virus that can lead to epidemic spread. In the
year 2019, COVID-19 was born. COVID-19 is a disease that,
as of this writing, is currently rapidly spreading among large
populations of people [14]. As mentioned above, it has been
deemed a pandemic, which is an epidemic that has spread to
multiple countries. Part 2 of this paper will explore epidemic
spread through toy models.

II. METHODS & RESULTS

A. Part 1 - How can neutral networks help us to understand
the past and potential future evolution of COVID-19?

There are many types of viruses. There are DNA viruses,
RNA viruses, and Retro-transcribing viruses. Some are small,
and some are big. [14] When they infect their host, they can
do it in a multitude of ways. They have been evolving along
with us for as long as life itself. Retro-transcribing viruses
even have the capability of changing our DNA. In a sense,
viruses helped create us. The SARS-CoV-2 virus is an RNA
virus that causes COVID-19. DNA viruses, which have built-
in error-correcting, are more stable than RNA viruses. Due to
the lack of error-correction, RNA viruses mutate often. [28]
This part will explore neutral networks to help us understand
the past and potential future evolution of SARS-CoV-2.

To begin to understand neutral networks, we need to under-
stand mutations of a strand of RNA. RNA contains a string of
nucleotides. A nucleotide comprises one of the four different
chemical bases: adenine (A), guanine (G), cytosine (C), and
thymine (T). Three nucleotides are called a codon, and it is
a code to 1 of 20 amino acids. How many possible codons
are there? There are 4 ∗ 4 ∗ 4 = 64. There are way more
codons than amino acids. This imbalance means that there are
redundancy and some codons map to the same amino acid.
We can determine, on average, how many codons map to the
same amino acids. We know that 64

20 = 3.2. We can simplify

this to 3 and say that, on average, 3 codons map to the same
amino acid. We can say that these 3 codons are neutral with
each other. A mutation occurs when a nucleotide changes
bases when replicated. It is considered a neutral mutation
when, after an RNA mutates, all codons result in the same
amino acids as the original. A neutral network consists of
all RNA strands that would result in the same amino acids
as the original. The RNA strands in this network connect via
neutral mutations, and because the current codon accounts for
1 of the 3 codons that are neutral, it is only possible to mutate
to 2 of the remaining.

We will now explore the scope of all possible RNA strands
that can be created by mutations, and the fraction of these
RNA strands that make up the neutral network for the original
RNA strand. We will start by understanding how many total
RNA strands exist. We will assume that SARS-CoV-2 has
30,000 nucleotides. First, let us determine how many RNA
strands exist after k mutations away. The following equation
can calculate this:
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k
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=
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k = number of mutations and n = number of nucleotides.
The total possible RNA strands are:
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We can plug in k = 1 and n = 30000 in equation 1 to calculate
the number of RNA strands one mutation away,

31
(
30000

1

)
=

31 ∗ 30000!
1!(30000− 1)!

= 90000 (3)

and the total possible RNA strands are 430000.
Now, we will determine how many strands are neutral out

of the total. We will start by analyzing a smaller example. We
will assume n = 3. We already know from above that this is
one codon, and the original RNA would have about 3 neutral
RNA Strands. This means that # Neutral

Total = 3
64 is the fraction

of neutral RNA strands. Furthermore, we can mutate from 1
of them to only 2 others. Now let us assume n = 6. This length
implies that the RNA strand is two codons. Each codon has,
on average, 2 neutral mutations. The fraction of neutral RNA
strands is 22

642 , which can be generalized as ( 2
64 )

n/3, assuming
n is divisible by 3.

The fraction of the neutral network gets smaller as the RNA
strand gets longer. The fraction of the neutral network for the
SARS-CoV-2 is ( 2

64 )
10000. This neutral network is minuscule

but is traversable by crawling the network from the original
RNA strand. It gives the virus high robustness, which allows it
to explore many non-neutral mutations than would be possible
without the neutral network.

The scope of possible mutations is vast, and the neutral
network is incredibly small in comparison. However, it is easy
to traverse the neutral network by making single mutations as
such mutations connect the network.



We will now focus on the spike protein. The spike protein is
the molecule of a coronavirus that allows it to bind to a recep-
tor on a host cell and then fusing the viral and host membrane
[21]. It makes up a small subset of the 30000 RNA strand.
We will explore spike proteins that are 15 nucleotides long
and code for 5 amino acids. The total possible genomes that
can be created with 15 nucleotides is 415 = 1, 073, 741, 824.
Figure 1 shows how the number of possible unique genomes
increases as we mutate the original genome more and more
times.

Fig. 1. The figure showcase the number genomes that exist k mutations away
for a genome 15 nucleotides in length. This information is useful to understand
the spike protein talked about in this section. The number of unique genomes
is calculated using equation 1 in the text above.

Fig. 2. This chart expressed the genetic code and what amino acids a codon
maps too. This chart was taken from the Project 2 assignment. A citation was
not found there.

The following table contains the spike proteins for various
coronaviruses. The spike proteins are similar except COVID-
2019 vs. SARS-2002:

SARS-2002 R Y L N Y T
Civet-2002 R Y L K Y S
Bat-2013 R S F N Y N

Covid-2019 N L F Q Q N
position 1 2 3 4 5 6

Looking at this table and the genetic code chart in figure 2,
we can determine the minimum amount of mutations needed
for the COVID-2019 spike protein to become the more deadly
SARS-2002 one. To do this, we will ignore position 1 and add
up the total amount of mutations to get from the amino acid
in one spike to the other. The following is what we would get:

L =⇒ Y = 2mutations

F =⇒ L = 1mutations

Q =⇒ N = 2mutations

Q =⇒ Y = 2mutations

N =⇒ T = 1mutations

TOTAL = 8mutations

What is the chance that one of the above would happen, and
that an amino acid could mutate into another amino acid? Let
us assume that any of the 30000 nucleotides have an equally
likely chance of mutating. Let us also assume that a base that
is currently set as 1 of the 4 possible bases has an equally
likely chance of mutating into one of the 3 remaining bases.
These assumptions are not exactly true but help to simplify
the problem. The probability that F =⇒ L would be 1

30000 ∗
1
3 = 1

90000 . The probability for just this one is small, but
the probability that one out of the five amino acids to change
goes up slightly. If we assume that every amino acid takes two
mutations, then the probability would be about 10

30000 to pick
any of the available nucleotides and then a 1

30000 to mutate the
second nucleotide for that appropriate amino acid. The final
probability would be 1

30000 ∗
10

30000 ∗
1
9 . If we assume, based on

Bedford’s blog, that, on average, 1 of the 30000 nucleotides
mutates upon transmission every 7 days, then it would take a
minimum of 8 weeks for the COVID-19 spike to mutate into
the SARS-2002 spike. This time would be a best-case scenario
where every mutation leads to the new spike. The probability
is tiny and would be the following:

8∏
m=1

m

90000
(4)

We will now focus on the 15 nucleotides of the spike
protein. This focus will allow us to use a computer to explore
the neutral network. We will also make some new assumptions
here to help us explore a path from the current COVID-
19 spike protein to the SARS-2002. What is the likelihood
that this will happen? If it did happen, how long would it
take? These are some questions we will try to answer in the
computer simulation. For the simulation to be successful, we
need to make some assumptions about the neutral network. At
the beginning of this section, the neutral network was defined
as any mutation that does not lead to change in the amino



acids. Since we are analyzing the path from two different sets
of amino acids, we need to make some new assumptions on an
acceptable neutral network that is traversable via mutations.

To build this network, we made sure there was at least one
possible path from the amino acids in each spike protein.
Using the table above, we have assumed that each position
could have a set of amino acids. Any permutation of these is
considered part of the neutral network.

Position 2 : L , Y , F , Q , H

Position 3 : F , L

Position 4 : Q , N , K , H

Position 5 : Q , Y , H , N

Position 6 : N , S , T

These assumptions define our neutral network. The
simulation that we run will take 100 COVID-19 spike
proteins and randomly mutate each one. After each mutation,
we will check to see if it is still in the neutral network
defined above. If it is not, then the variant will die and get
replaced with a new COVID-19 spike. Eventually, there will
be a variant that mutates to SARS. The following is the data
from the simulation that runs until 5 SARS variants have
been discovered:

• Total SARS variants: 5
• Total dead variants: 73676819
• The chance a variant will become SARS: 0.000000068
• Max mutations needed to get to SARS: 12
• Min mutations needed to get to SARS: 10
• Average mutations of the dead are: 1.657
• The average mutation needed per SARS: 10.6

The simulation shows that it is improbable that a COVID-
19 spike protein will mutate into the SARS version. If it does,
on average, it will take about 10.6 weeks to mutate into the
SARS variant.

Now, we will perform the same simulation with the spike
protein LLYYD, BAT-RAT13 [27]. To analyze this one, we
again need to make some assumptions about the neutral
network. Much like was done above, we define the approved
amino acids for each position. The neutral network contains
every possible permutation for the positions.

Position 2 : L

Position 3 : F , L

Position 4 : Q , H , Y

Position 5 : Q , H , L , Y

Position 6 : N , D

The output of this simulation ran with the following results:

• Total SARS variants: 5
• Total dead variants: 2852679
• The chance a variant will become BAT-RAT13:

0.000001753
• Max mutations needed to get to BAT-RAT13: 7
• Min mutations needed to get to BAT-RAT13: 6
• Average mutations of the dead are: 1.503
• The average mutation needed per BAT-RAT13: 6.4

We can see that the COVID-19 spike has a way better
chance to become BAT-RAT13. The chances are still not likely.
We can see that, on average, this would only take about 6.4
mutations and about 6.4 weeks to get there. In this section,
we have explored how small the neutral network is compared
to the total possible network. Because the current genome is
part of the neutral network, it can travel this network, even
though it is small. It also means that it is much more likely
for a mutation to lead to deleterious results. Mutations usually
are not useful, but without mutations, the evolution of viruses
will not happen. Viruses rely on mutations in their arms race
to survive against their hosts. This mutation characteristic
sometimes leads to a pandemic of epic proportions. A situation
where this small little virus tells its host, ”check. It is your
move.” The next part of this paper will explore epidemic
spread using a toy model. What can we learn from these simple
models? Will it help us determine what move we will make
next?

B. Part 2 - What can we understand about the spread of
Covid-19?

After discussing the history and future evolution of COVID-
19 with SARS and other similar viruses that came before and
looking at the neutral space of COVID-19, we now focus
on how COVID-19 can spread among species, humans in
particular. To understand the spread of COVID-19, we built a
simple 3 state, 2-dimensional Cellular Automata (CA) with the
SIR dynamics to model this epidemic spread. For our 2d CA,
we chose our board size to be 50x50. Modeling the epidemic
spread with the help of CA can help model a scenario of an
already quarantined city or a population on a cruise ship where
this epidemic is spreading. Due to this assumption, modeling
the epidemic spread with CA makes sense here as the cells
on 2d CA do not move, and the edges and corners have few
neighbors. In our 2d CA toy model, each center cell represents
a human being with eight surrounding cells representing other
human beings in the population as neighbors. We also include
the center cell when discussing neighbors for a total of 9
neighbors. This radius keeps the neighborhood size of a cell
to one since a cell can only interact with its closest neighbors
in our model. This neighborhood function is called a Moore
neighborhood [27].

In order to explore epidemic spread, determining which
rules to use are very important, and understanding SIR dynam-
ics also becomes essential. In the study of epidemic spread,
SIR dynamics is crucial because it defines the state of the cell
in every possible situation. A cell can either be Susceptible



(S), Infected (I), or Recovered (R) [24]. The neighboring cells
determine the next state. This constraint gives us the ability to
build a rule table that accounts for how a cell in state S can
become I, and how a cell in the state I can become R. When
a cell recovers, it is considered immune to the disease.

Keeping SIR dynamics and neighborhood function in mind,
let us understand how many possible rules there are in a rule
table. Since our toy model encodes a scenario of a quarantined
city, there are three possible cases here to determine rules:
normal rule entries, edge rule entries, and corner rule entries.
In order to understand each of these rule entries for our toy
model, let us first understand some basic principles: A cell
follows SIR dynamics, so it has 3 states. The neighborhood
function tells us that a cell has 9 neighbors, including itself.
Keeping these principles in mind, understanding normal rule
entries is trivial, as its just permutation of SIR in 9 places
since there are 9 neighbors, So, normal rule entries = 39. The
edge and corner rule entries are special rule entries since the
cells on the edge or corner have fewer neighbors. If we talk
about the cells on the edges or corners, they do not have all
9 neighbors in their neighborhood. To be precise, the cells on
the edge have 6 neighbors in bounds, and the cells on the
corner have 4 neighbors in bounds, and there are 4 edges and
corners of 2d CA. Thus, edge rule entries = 4 ∗ 36 and corner
rule entries = 4 ∗ 34. In total, there are 39 + 4 ∗ 36 + 4 ∗ 34
rule entries in the rule table.

Now that we know how many rules there are, it is time
to determine how we can simulate the epidemic spread by
transitioning cell states using SIR dynamics. In order to study
the epidemic spread, we came up with several rules to simulate
the epidemic spread. These include both deterministic and
non-deterministic rules. We first build a deterministic rule
mapping to simulate the epidemic spread. The deterministic
rule mapping for a given cell on the board that we chose is
as follows:

• If a cell is in state S, it goes to state I only if there exists
at least one neighbor who is in state I. Otherwise, it will
stay in state S.

• If a cell is in state I, it goes to state R only if all of its
neighbors are in state I. Otherwise, it will stay in state I,

• If a cell is in state R, it always remains in state R.
Using these deterministic rules for simulating the epidemic

spread, we initialized all cells in our CA to state S except for
one cell in the middle to be in state I. As the disease spreads,
some cells become infected while some cells recover. Figure
3 shows how the disease spreads using deterministic rules that
we build above:

The figure 3 shows that the disease is spreading in a
spiral shape. As the disease spreads from the center of the
population, the innermost cells are getting recovered as all of
their neighbors become infected, and outer cells are getting
infected as soon as one or more of its neighbors become
infected (see Appendix A for seeing additional figures showing
how the disease spreads using deterministic rules). The thing
noticeable here is that the disease spreads rapidly, which is
how an epidemic spreads. After just 25 iterations, we can see

Fig. 3. The figure shows the epidemic spread after 25 iterations of CA using
deterministic rules. After 25 iterations, most cells are either infected (red) or
recovered (blue) and some cells are still susceptible (green).

that all cells except some on the edge become infected, and
some recovered and become immune to the disease. However,
the results we see from the deterministic rules are not realistic.
They are not realistic because every time we simulate this
epidemic spread, we get the same results showing only one
way of how an epidemic spreads. In the real world, it is hard
to predict how an epidemic spreads because the spreading
of an infectious disease is not entirely deterministic. For a
real epidemic spread, there are more factors involved, such
as analyzing how many people will get infected? How many
will recover, and how many will die from the epidemic spread
[26]? What is the likelihood other humans surround a human,
and how many of them are infected? To answer this, we need
to define non-deterministic rules based on a probability of how
likely a cell can get infected due to infected neighbors.

In order to model an epidemic spread that behaves non-
deterministically, we come up with non-deterministic rules.
These rules attach a probability to whether a cell becomes
infected. Therefore, we revised our rule mapping from being
deterministic to non-deterministic. The non-deterministic rule
mapping for a given cell on the board is as follows:

• If a cell is in state S, the probability of being infected is
based on the infected neighbors.

• If a cell is in state I, the probability of being recovered
is fixed to 10%.

• If a cell is in state R, there is 0% probability that it will
change. Therefore, it remains R.

For simulating the epidemic spread using non-deterministic
rules, we kept the same initial configuration for the CA
board that we used in the deterministic version. The only
thing we changed was to use the non-deterministic rules to
showcase how a disease spreads. Figure 4 shows the epidemic



spread using non-deterministic rules. The simulation shows
that the disease spreads slowly initially. Then the number of
cells infected increases sharply, creating, what seems to be, a
realistic disease spread (see Appendix B for seeing additional
figures showing the epidemic spread using non-deterministic
rules). The disease spreads gradually, and after a while, the
whole population gets affected by the disease, as can be seen in
figure 4. We can see that using non-deterministic rules creates
a more organic looking scenario of an epidemic spread because
a cell follows probabilistic factors.

Fig. 4. The figure shows the epidemic spread after 68 iterations. Almost all
cells have become infected and a lot of the cells have become immune to the
disease and have recovered.

After simulating epidemic spread using both deterministic
and non-deterministic rules, we continue our exploration of
how an epidemic spreads. So far, our model has only been
simulating the epidemic spread using a single disease variant
of COVID-19. We have seen how an epidemic spreads if there
is a single variant. However, in order to make our exploration
interesting, we introduce a second variant of the disease to
our toy model. This second disease variant uses the same SIR
dynamics as the first variant used and is non-deterministic. For
simplicity’s sake, instead of denoting infected and recovered
cells as I and R respectively, we denote the cells in the
second disease variant as I’ and R’. For the second variant,
we introduce two additional probabilities for a given cell in
state S and state I’. To make it consistent with the first variant,
once the cell is in state R’, it stays R’ as the cell has recovered
from this second disease variant. To include both variants in
our CA, we also initialized the cells in our CA randomly,
where all cells are in state S except for two random cells,
which are I and I’ respectively.

Can both disease variants coexist equally in a population?
To answer this, we initialize our two additional probabilities
for the second variant to be values chosen at uniform random

between [0,1]. To make both disease variants coexist equally,
we ran a Genetic Algorithm (GA) against our toy model to
evolve both probabilities of transitioning from state S to I’ and
state I’ to R’. The goal of the GA here is to make sure that
the probabilities of the second disease variant evolve to coexist
with the first disease variant. We achieve the coexisting of two
diseases in a population by adding two additional probabilities
in each of the 100 populations of CA in our GA. We then
let our GA perform multiple runs, where a run consists of
iterating over each CA’s board until there are no infected cells,
I or I’ left for both variants. We let GA perform runs until
the second disease variant evolves and coexist equally with
the first variant, meaning the recovery rate for both disease
variants is approximately equal. Both R and R’ are relatively
close to each other. The closer the recovering rate is for both
diseases, the lower and better fitness value we get for the CA.
This gives us the ability to simulate both diseases in our 2d
CA toy model.

Once the GA gives us the evolved probabilities for the
second variant, we simulate the epidemic spread using both
variants. Figure 5 shows how both diseases coexist equally and
how both diseases spread in the population. The simulation
shows both variants of the disease start spreading in the
population at approximately an equal rate and coexist together
[see Appendix C for seeing additional figures]. Hence, the
results in figure 5 satisfies the question we brought up earlier
and shows us that two disease variants can coexist equally in
a population.

Fig. 5. The figure shows spreading of two variants of the disease among the
population. After 54 iterations, both disease variants coexist equally. The cells
in I’ and R’ state can be seen in orange and black respectively and cells in I
and R state can be seen in red and blue respectively. The remaining cells are
in state S (green).

With the help of using 2d CA toy models with SIR dy-
namics, we explored epidemic spread by using different rules.
The first model used deterministic rules and expressed a non-



organic outcome. This model did not seem to effectively model
how an epidemic might spread. We improved this model by
utilizing probabilities in our second model, which used non-
deterministic rules. This change ultimately leads to a more
natural spread. We further explored the epidemic spread by
introducing a second variant that competes with the first one.
To determine if they could coexist equivalently, we used a GA
to determine the rules for the second variant. It turns out both
variants could coexist and infect the population equivalently.
This exploration does not accurately model a real population.
It creates more questions. Does self-isolation help? How does
hygiene change the infection rate? Ultimately these models
begin the process of understanding a complex phenomenon
and should be explored further.

III. DISCUSSION & CONCLUSIONS

This paper has explored just a small piece of a very
complex world involving viruses and the current epidemic
that is spreading across the world. The paper has focused
on attempting to understand neutral networks and epidemic
spreads. We explored it at an elementary level. Many ques-
tions are generated just from this basic exploration. The neutral
network is an interesting property of viruses. It is a tiny part
of the entire possible network, but it exists close together. This
allows it to be traversed. How can a neutral networks help us
map out the movement of a virus over time and geographical
locations? Can it help us understand the origin of viruses?
More importantly, can it tell us what all current viruses will
become in the future? If we understand how viruses evolve,
we may be able to stop them proactively instead of reacting
to them.

Understanding epidemic spread is critical if we must react to
viruses. They can help us react more intelligently to reduce the
negative impact of an epidemic. We explored epidemic spread
at a microscopic level and assumed a situation of a population
existing in an already quarantined city. Although that is not the
case everywhere, and the population tends to move, whether it
be through travel or being in a mass gathering at certain events.
However, understanding the epidemic spread at a microscopic
level can help us understand epidemic spread at a macroscopic
level. With the help of this tiny model we built for studying
epidemic spread, we can see, even if a population is in a
quarantined city and living closely together, the chances of
epidemic spread are still higher.
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APPENDIX A
ADDITIONAL FIGURES SHOWING THE SIMULATION OF CA

USING DETERMINISTIC RULES

Fig. 6. The initial configuration of CA using deterministic rules. The cells
in green are Susceptible and the cell in red is Infected.

Fig. 7. The figure shows the epidemic spread after 10 iterations of CA using
deterministic rules. The recovered cells are shown in blue.

APPENDIX B
ADDITIONAL FIGURES SHOWING THE SIMULATION OF CA

USING NON-DETERMINISTIC RULES

The figures 8 and 9 show a sharp increase in the epidemic
spread after an initial slow start. As the disease spreads, the
probability of a cell in state S becoming infected increases as
more neighbors get infected.

Fig. 8. The figure shows the disease spreading gradually after 14 iterations.
Using non-deterministic rules, the figure shows some cells recovering as the
disease spreads.

Fig. 9. The figure shows the epidemic spread after 30 iterations. The amount
of cells infected is 3x more than it was after 14 iterations.



APPENDIX C
ADDITIONAL FIGURES SHOWING THE SIMULATION OF CA

USING TWO VARIANTS

Fig. 10. The figure shows spreading of two variants of the disease after 15
iterations.

Fig. 11. The figure shows spreading of two variants of the disease after 30
iterations. Both variants are trying to infect the population equivalently.

PROJECT 3 PROPOSAL

Project title: Asymptomatic Screening to Reduce Epidemic
Spread

Research question and hypothesis: Research Question:
Can a more effective screening process that includes asymp-
tomatic carriers decrease epidemic spread? Can this eliminate
the need for a lockdown? Hypothesis: We think there could be
a more effective screening process that can allow the economy
to continue as usual, or at least reduce the need to close
everything besides essential businesses. We think that, if there
were no shortages on tests, then there could exist a scenario
where everyone gets tested weekly. They will quarantine if
sick or continue life as usual. All businesses can stay open.
We will explore this hypothesis.

Motivation: Project 2 was mainly an introduction to
epidemic spread modeling. The SIR models are fascinating,
but they leave a lot to be desired. We want to effectively model
the movement of people and how this affects the simulation.
We feel that asymptomatic people could be a factor as to why
this epidemic spread so forcefully.

There is an article called Aerosol and Surface Stability of
SARS-CoV-2 as Compared with SARS-CoV-1. The goal of this
paper is to see if COVID-19 stays around longer on surfaces
compared to the original SARS. The paper found that they are
similar. It determined that there must be a different factor that
determines why COVID-19 is more contagious. One of their
thoughts is due to asymptomatic patients.

There is another article called How can an asymptomatic
person still spread the coronavirus?. This article explains how
the immune system works and how it is possible that even
though a person does not show symptoms, they can still be
infectious. They are walking around entering places as if they
are healthy. People react as if they are healthy. As soon as there
is a sneeze or a cough to clear the throat, the virus spreads.

The last paper that we thought was interesting is Estimated
effectiveness of symptom and risk screening to prevent the
spread of COVID-19. This article found that the current screen-
ing procedure misses more than half of the infected screened.
The article estimates that when a person could show symptoms
based on the exposure time and how a traveling screening
program will miss %50 to %75 of the infected individuals.
They determined that a symptom and risk screening programs.

Proposed research: A big portion of this paper will be
about the current screening process. What does this involve?
How is it done? One of the papers above is an excellent start
to answering this. We could also analyze historical screening
processes. How were past viral outbreaks addressed? We will
need to understand the current state to introduce the paper and
why we need to try another approach. This research could take
about a week or two.

Next, we need to start collecting as much data as possible to
build an agent-based model on the epidemic spread of COVID-
19. The data that we would be collecting is information like
incubation period, percentage of asymptomatic carriers, how
infections are asymptomatic carriers compared to symptomatic



ones, how long does the virus survive on a surface. These are
all needed to help build a model. This research could take
anywhere from 1 week to 2 weeks.

A majority of the time will be needed to code up an agent
based model. There may be research involved in learning
agent based modeling and how to best model a scenario. Most
likely, the time will be spent on learning yet another new
programming language. This will take about 2 weeks giving
time for debugging.


